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Abstract. Within the framework of quantum groups and additiveR-matrices, the fusion procedure
allows one to construct higher-dimensional solutions of the Yang–Baxter equation. These solutions
lead to integrable one-dimensional spin-chain Hamiltonians. Here fusion is shown to generalize
naturally to non-additiveR-matrices, which therefore do not have a quantum group symmetry.
This method is then applied to the generalized Hubbard models. Although the resulting integrable
models are not as simple as the starting ones, the general structure is that of two spin-(s× s′) sl(2)
models coupled at the free-fermion point. An important issue is the probable lack of regular points
which give local Hamiltonians. This problem is related to the existence of second-order zeros in
the unitarity equation, and arises for theXX models of higher spins, the building blocks of the
Hubbard models. A possible connection between some Lax operatorsL andR-matrices is noted.

1. Introduction

The construction and diagonalization of integrable one-dimensional spin-chain Hamiltonians
within the framework of the quantum inverse scattering method (QISM) is well known [1–
4]. A given integrable model and all its conserved quantities are encoded in anR-matrix
which satisfies the Yang–Baxter equation (YBE). The quantum group approach [5, 6] provides
a systematic way to obtain a large class of solutions based on representations of some
underlying Lie algebra [7] or super-algebra [8]. By construction, such solutions possess
the additivity property which means that the initial double spectral parameter dependence
reduces to the difference of the two parameters. The most famous example is the spin-1

2
XXZ chain.

On the other hand, models having non-additiveR-matrices have been known to exist for a
long time. Examples of such models include Shastry’s solution for the Hubbard model [9, 10],
the Chiral Potts models [11–13] and more recently the Bariev models [14–16]. The Hubbard
model both in its bosonic and fermionic guises was also generalized to multi-state versions,
while retaining the same algebraic structure. Initial versions were first introduced in [17],
studied in [18–20], further generalized in [21] and fermionized in [22]. (See also [23] for
another possible fermionization scheme.) All these non-additive solutions of the Yang–Baxter
equations are isolated and do not yet fit within a general framework.

A general method for constructing solutions to the Yang–Baxter equation out of a given
known solution is the fusion method. It works by multiplying the same matrix by itself a
certain number of times, at different values of the spectral parameter, and finally multiplying
by a projector. This works much the same way as building higher-dimensional representations
from tensor products of a smaller one and a final projection on a subspace. For instance, an
sl(2) spin-s solution can be obtained by successive fusions of the spin-1

2 solution [24]. It is,
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in fact, possible to fuse an arbitrary product ofR-matrices to obtain solutions of the YBE
corresponding to most (but not always all [25]) representations of a given Lie algebra [26, 27].
Within the framework of quantum groups, the direct method for findingR-matrices with a
given Lie algebra symmetry, and corresponding to a given representation, consists of solving
linear equations [7]. This method and fusion give the same results.

In [28]† fusion was shown to work for a class of models which retained only some aspects
of ansl(m) quantum group structure. Higher-dimensional solutions were obtained by fusion,
where no quantum group symmetry and therefore no direct method existed.

In this work I derive fusion equations for non-additiveR-matrices. The results of section 2
are quite general and require the starting matrix to satisfy only a minimal number of properties.
The generalized Hubbard models are shown to satisfy these properties. This allows one to
construct higher-spin Hubbard models which appear as two copies of a multi-flavour spin-
(s × s ′) model coupled at the ‘free-fermion’ point. The coupling does not have the simple
structure of the starting models. The resulting integrable models have non-additive, unitary,
R-matrices but appear to lack the usual regularity property, which would allow one to obtain
local Hamiltonians. The source of this lack of regularity is traced back to the spin-s building
blocks. These models, fors > 1, are not regular but still allow for local mutually commuting
quantities through a limiting procedure from a genericq value. It is not clear how to implement
this for the higher-spin Hubbard models. Possible applications to the Bariev and Chiral Potts
models are mentioned in the conclusion. A possible connection between some Lax matrices
andR-matrices is also proposed.

2. Fusion for non-additiveR-matrices

Given a non-additive solution of the Yang–Baxter equation, it is possible to obtain new solutions
provided one has a projector point. Expressions for four fused matrices are found along with
the equations they satisfy. The results of this section are general and hold without reference
to any particular model. The notation follows closely that of [28]. Here the word fusion is
used in the conventional sense, and not in the sense of [21]. For the additive case, Kulish
and Sklyanin had already realized that only two properties were needed for fusion to be
possible. The Yang–Baxter equation has to be satisfied and a projector point must exist (p 108
of [1]).

Consider a non-additive solutionR(λ1, λ2) of the Yang–Baxter equation

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2). (1)

Additivity means that for a proper choice of parametrization, and after eventual transformations
such as a gauge (a special similarity transformation onR) [7] or twist (a special similarity
transformation onŘ) [29] transformation, one can writeR12(λ1, λ2) = R12(λ1 − λ2).
Most known solutions of the YBE are additive. This includes, in particular, all solutions
corresponding to a quantum group symmetry,Uq(G), whereG is any Lie algebra or super-
algebra [7, 8]. Known non-additive solutions include the class of generalized Hubbard models
in their bosonic and fermionic forms [21, 22], the chiral Potts models [13] and the Bariev
models [14–16].

To implement fusion it is enough that the solution at hand has a projector point. Thus
consider any solutionR of the Yang–Baxter equation (1), which becomes proportional to a

† In equation (17)f ′(ρ) andf ′′(ρ) should replacef ′(0) andf ′′(0).
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projector at some special values of the spectral parameters pair(λ1, λ2). Specifically, define
the projectorπ(1) through

R(λ + ρ, λ) ≡ g(λ) π(1) (2)

and letπ(2) = I − π(1) be the orthogonal complementary projector. Both projectors are
assumed to be independent ofλ, andρ is some fixed value characteristic of theR-matrix at
hand. I have then verified that the methods used in [28] can be extended to the non-additive
setting. This yields the following results.

Let S be the matrix which diagonalizes both projectors. Define two fused matrices, for
i = 1, 2, by

R
(i)
〈12〉3(λ, λ3) = S−1

12 π
(i)
12 R13(λ, λ3) R23(λ− ρ, λ3) π

(i)
12S12. (3)

The matrices (3) satisfy a YBE where one space is a tensor product of two spaces:

R
(i)
〈12〉3(λ, λ3) R

(i)
〈12〉4(λ, λ4) R34(λ3, λ4)

= R34(λ3, λ4) R
(i)
〈12〉4(λ, λ4) R

(i)
〈12〉3(λ, λ3) i = 1, 2. (4)

We have thus obtained newR-matrices. Ifdi, i = 1, 2, 3, are the dimensions of the spaces 1,
2 and 3, and tr(π(1)) = d, then after deletion of the vanishing rows and columns,R

(i)
〈12〉3(λ, λ3)

is add3-dimensional matrix fori = 1, and(d1d2 − d)d3-dimensional fori = 2.
Note also that there is another possible choice of fused matrices obtained by taking the

right-hand side of the YBE at the projector point (see (4) of [28]). There is, however, no
essential difference with the foregoing choice.

One can then fuse two matricesR(i)〈12〉3(λ, λ3) to obtain the matrixR(i)〈12〉〈34〉(λ, µ) defined
by

R
(i)
〈12〉〈34〉(λ, µ) = S−1

34 π
(i)
34 R

(i)
〈12〉4(λ, µ− ρ)R(i)〈12〉3(λ, µ) π

(i)
34S34 i = 1, 2. (5)

These matrices have dimensionsd2 for i = 1, and(d1d2 − d)2 for i = 2. They satisfy two
Yang–Baxter equations (i = 1, 2):

R
(i)
〈12〉〈34〉(λ, µ)R

(i)

〈12〉5(λ, λ5) R
(i)

〈34〉5(µ, λ5) = R(i)〈34〉5(µ, λ5) R
(i)

〈12〉5(λ, λ5) R
(i)
〈12〉〈34〉(λ, µ) (6)

R
(i)
〈12〉〈34〉(λ, µ)R

(i)

〈12〉〈56〉(λ, ν) R
(i)

〈34〉〈56〉(µ, ν) = R(i)〈34〉〈56〉(µ, ν) R
(i)

〈12〉〈56〉(λ, ν) R
(i)
〈12〉〈34〉(λ, µ).

(7)

Now assume that the originalR-matrix is regular and unitary, i.e.

R12(µ,µ) = c(µ)P12 (8)

R12(λ, µ)R21(µ, λ) = f (λ, µ) I (9)

whereP is the permutation operator andR21 ≡ P12R12P12. The functionf (λ, µ) is then
symmetric in its arguments, andc(µ) is some complex, generically non-vanishing function.
The fused matrices (5) inherit the regularity property (8) provided they are correctly normalized,
for the correspondingc-function not to vanish. This can be achieved by the following
normalization. Insert a factor of(f (λ + ρ,µ))−1 in the right-hand side of equation (5).
As R(µ + ρ,µ) is a non-trivial projector, unitarity (9) implies thatf (µ + ρ,µ) vanishes for
all values ofµ. The normalization just introduced cancels this zero in the numerator and
leaves a regular fused matrix. Incidentally, the symmetry off implies thatf (µ,µ + ρ) also
vanishes.
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The form (5) can be simplified to a more symmetric one:

R
(i)
〈12〉〈34〉(λ, µ) =

1

f (λ + ρ,µ)
S−1

12 S
−1
34 π

(i)
12π

(i)
34 R14(λ, µ− ρ)R24(λ− ρ,µ− ρ)

×R13(λ, µ)R23(λ− ρ,µ) π(i)12π
(i)
34S12S34 i = 1, 2 (10)

where the normalization has been included.
Let ∂if (λ1, λ2) denote the derivative with respect to theith slot (i = 1, 2). Taking the

limit λ −→ µ for the normalized matrices I find

R
(1)
〈12〉〈34〉(µ,µ) = c(µ)c(µ− ρ)

∂2f (µ,µ− ρ)
∂1f (µ + ρ,µ)

P13P24S
−1
12 π

(1)
12 S12S

−1
34 π

(1)
34 S34 (11)

R
(2)
〈12〉〈34〉(µ,µ) = c(µ)c(µ− ρ)

∂1f (µ,µ− ρ)
∂1f (µ + ρ,µ)

P13P24S
−1
12 π

(2)
12 S12S

−1
34 π

(2)
34 S34. (12)

The unitarity property is inherited independently from the normalization:

R
(i)
〈12〉〈34〉(λ, µ)R

(i)
〈34〉〈12〉(µ, λ) =

f (λ− ρ,µ)f (λ, µ)f (λ− ρ,µ− ρ)f (λ, µ− ρ)
f (λ + ρ,µ)f (µ + ρ, λ)

×S−1
12 π

(i)
12S12S

−1
34 π

(i)
34S34 i = 1, 2 (13)

whereR(i)〈34〉〈12〉(λ, µ) = P13P24R
(i)
〈12〉〈34〉(λ, µ)P13P24.

Within the framework of the QISM, the quadratic Hamiltonian density of such integrable
hierarchies is the derivative atλ = µ of the matrixŘ(λ, µ) = PR(λ,µ). Taking the limit
yields

d

dλ
Ř
(i)
〈12〉〈34〉(λ, µ)|λ=µ = −

∂2
1f (µ + ρ,µ)

2∂1f (µ + ρ,µ)
Ř
(i)
〈12〉〈34〉(µ,µ)

+
1

2∂1f (µ + ρ,µ)
S−1

12 S
−1
34 π

(i)
12π

(i)
34

d2

dλ2

(
R32(λ, µ− ρ)Ř13(λ, µ)

×Ř24(λ− ρ,µ− ρ)R23(λ− ρ,µ)
)∣∣
λ=µ π

(i)
12π

(i)
34S12S34. (14)

The first term is proportional to the identity in the fused spaces and may be dropped. The
results of [28] in the additive case can be recovered by settingf (λ, µ) −→ f (λ−µ), with f
now an even function. (There is an obvious misprint in formula (17) of [28]:f ′(0) andf ′′(0)
should be replaced byf ′(ρ) andf ′′(ρ).)

An implicit assumption, which doesnotaffect the Yang–Baxter equations, was made when
deriving the regularity equations (11) and (12):f (λ+ρ,µ)was taken to vanish like(λ−µ) for
λ −→ µ. However, this zero can be of second order. This will be case for the Hubbard models
studied in the next section. A zero of any order does not affect the unitarity equation (13) as
the numerator and denominator compensate to give a finite non-vanishing result. However, it
is necessary to perform a second- or higher-order expansion to find the appropriate expressions
for the regularity equations. It does not appear to be possible to prove in general, and with
a minimal set of assumptions, that regularity still holds. However, the result is finite. An
argument in favour of regularity is the unitarity equation which says thatŘ12(µ,µ) squares to
the identity. However, this turns out not to be enough and specific counter-examples are the
multi-flavour spin-s models atγ = π/2, for s > 1. Note that the above issues of regularity
will arise for all fused matrices with non-simple zeros in the unitarity equations of the starting
R-matrix.
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In the case of a second-order zero forf (λ, µ), and provided the fused matrix is regular,
the Hamiltonian density is given by

d

dλ
Ř
(i)
〈12〉〈34〉(λ, µ)|λ=µ = −

∂3
1f (µ + ρ,µ)

3∂2
1f (µ + ρ,µ)

Ř
(i)
〈12〉〈34〉(µ,µ)

+
1

3∂2
1f (µ + ρ,µ)

S−1
12 S

−1
34 π

(i)
12π

(i)
34

d3

dλ3
(R32(λ, µ− ρ)Ř13(λ, µ)

×Ř24(λ− ρ,µ− ρ)R23(λ− ρ,µ))
∣∣
λ=µ π

(i)
12π

(i)
34S12S34. (15)

Regularity implies that the first term is proportional to the identity and may be dropped.
The projector property is the only additional ingredient needed to construct fused matrices.

For theR-matrices based on Lie algebras, the degeneration of a generically invertibleR-matrix
to a projector is expected. However, for non-additive matrices one has to verify in every case
whether a projector point exists. Note also that the unitarity property (13) for the fused matrix
indicates that it may have its own projector point. This in turn implies that fusion may be
continued to another level, or even indefinitely as happens in the quantum group framework.

The above fusing scheme will now be applied to the generalized Hubbard models.

3. Hubbard fusion and non-locality

We first recall the construction of the multi-state or multi-flavour Hubbard models in their
bosonic form†. The connection between theL- and R-matrices is clarified. Fusion is
implemented. The connection between double zeros in the unitarity equation and the lack
of regularity is discussed using specific examples.

3.1. A Hubbard primer

The following ‘free-fermions’ orXX models are building blocks of the Hubbard models. Let
n, n1 andn2 be three positive integers such thatn1 + n2 = n, andA, B be two disjoint sets
whose union is the set of basis states ofCn, with card(A) = n1 and card(B) = n2. LetEαβ be
a square matrix with a one at rowα and columnβ and zeros otherwise. Define

P̃ (1) =
∑
a∈A

∑
β∈B

(
Eaβ ⊗ Eβa +Eβa ⊗ Eaβ) (16)

P̃ (2) =
∑
a,a′∈A

Eaa
′ ⊗ Ea′a +

∑
β,β ′∈B

Eββ
′ ⊗ Eβ ′β (17)

P̃ (3) =
∑
a∈A

∑
β∈B

(
xEaa ⊗ Eββ + x−1Eββ ⊗ Eaa). (18)

Latin indices always belong toA, while Greek indices belong toB. The complex twist
parameterx is arbitrary. The free-fermionsR-matrix

R(λ) = P̃ (1) + P̃ (2) cosλ + P̃ (3) sinλ (19)

satisfies the additive Yang–Baxter equation:

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ). (20)

The interpretation of the multiple flavours in terms ofsl(2) states was done in [28].

† See [21], in section 7Tαα′ should replacetαα′ .
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Coupling two commuting copies of the foregoing models gives the Hubbard models.
Where made explicit, the two copies are denoted by unprimed and primed quantities. Let us
stress that the copies neednotbe of the same type. For instance, the ‘left’ copy can be(n1, n2),
while the ‘right’ copy is(n′1, n

′
2) with n not necessarily equal ton′. (ni = n′i = 1 correspond

to the original Hubbard model.) The twist parameters may also differ. One then defines a
multi-flavour version ofσ z, the conjugation matrix

C =
∑
β∈B

Eββ −
∑
a∈A

Eaa (21)

and a diagonal coupling matrix

I00′(h) = cosh
(

1
2h
)
I + sinh

(
1
2h
)
C0C

′
0 = exp

(
1
2hC0C

′
0

)
. (22)

The parameterh is related to the spectral parameterλ by

sinh(2h) = U sin(2λ) (23)

whereU is the coupling constant. One chooses forh(λ) the principal branch which vanishes
for vanishingλ orU . The Lax operator at sitei is equal to

L0i (λ) = I00′(h)R0i (λ) R0′i ′(λ) I00′(h). (24)

Their commutation relations for different spectral parameters at a given site are given by

R(λ1, λ2)
1
L(λ1)

2
L(λ2) =

2
L(λ2)

1
L(λ1) R(λ1, λ2) (25)

where
1
L(λ1) = L(λ1)⊗ I,

2
L(λ2) = I⊗ L(λ2), and

R(λ1, λ2) = I12(h1)I34(h2)

[
R13(λ1− λ2)R24(λ1− λ2) +

sin(λ1− λ2)

sin(λ1 + λ2)

× tanh(h1 + h2)R13(λ1 + λ2)C1R24(λ1 + λ2)C2

]
I12(−h1)I34(−h2). (26)

This matrix is non-additive as it is not possible to reduce is spectral parameter dependence to
λ1− λ2. It satisfies the regularity property

R(λ1, λ1) = P13P24 (27)

and the unitarity property

R12(λ1, λ2)R21(λ2, λ1) = cos2(λ1− λ2)
(
cos2(λ1− λ2)− cos2(λ1 + λ2) tanh2(h1− h2)

)
I.
(28)

The matrix (26) satisfies the Yang–Baxter equation (1), withλi andhi related through (23).
The Hubbard models have a Lax matrixL which differs from the intertwinerR. One

may wonder which matrix should be a candidate for fusing, and what is the role of theRLL

relation as opposed to theRRR one. The matrixR satisfies the symmetric equation (1), while
L satisfies the asymmetric equation (25). This already singles out the former as the natural
object to fuse. Another compelling reason is thatL and (25) are just special asymmetrical
limits of R and (1). Indeed, one easily finds that

R1234(λ1, 0) = 1

coshh1
I12(h1)R13(λ1)R24(λ1)I12(h1) = 1

coshh1
L(12)(34)(λ1). (29)

Settingλ3 = 0 in (1) gives (25). One also has

R1234(0, λ2) = 1

coshh2
I34(−h2)R13(−λ2)R24(−λ2)I34(−h2) (30)
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where now the coupling of the two copies is made on the quantum spaces rather than the
auxiliary spaces. Settingλ1 = 0 in (1) gives anRLL relation. The corresponding quadratic
Hamiltonian and all the other conserved quantities are, however, essentially the same as for the
auxiliary-space coupling case. Now theR-matrix can be seen as anL-matrix with couplings on
both auxiliary and quantum spaces. The price of this symmetrization is the linear combination
in (26) and the loss of additivity. The quadratic Hamiltonian density obtained fromR at the
arbitrary regular pointλ = µ is given by

d

dλ
Ř(λ, µ)|λ=µ = U cos 2µ

2 cosh 2h
(C3C4 − C1C2)

+P13P̃
(3)
13 (cosh2 h− C2C4 sinh2 h) + P24P̃

(3)
24 (cosh2 h− C1C3 sinh2 h)

− 1
2 sinh(2h)

(
p
(3)
13 (C2 +C4) + p(3)24 (C1 +C3)

)
+

U

cosh 2h

(− sin(2µ) sinh(2h) (P13P̃
(1)
13 P24P̃

(3)
24 + P13P̃

(3)
13 P24P̃

(1)
24 )

+2 sin 2µ sinh2 h (p
(1)
13p

(3)
24 + p(3)13p

(1)
24 )

+(p(1)13 + cos(2µ)p(2)13 + sin(2µ)p(3)13 ) (p
(1)
24 + cos(2µ)p(2)24 + sin(2µ)p(3)24 )

)
(31)

whereh = h(µ) is given by (23) andp(i)jk ≡ PjkP̃ (i)jk Cj , i = 1, 2, 3 andj, k = 1, . . . ,4. The
indices are interpreted as follows: 1→ site-m-unprimed-copy, 2→ site-m-primed-copy, 3→
site-(m + 1)-unprimed-copy, 4→ site-(m + 1)-primed-copy. It is only atµ = 0 where this
expression reduces to the familiar generalized (bosonic) form of the Hubbard Hamiltonians.

TheI factors in (26) combine into a similarity transformation. It is, in fact, a special type
of gauge transformation, and an equivalentR-matrix is given by [10]

r(λ1, λ2) = R13(λ1− λ2)R24(λ1− λ2)

+
sin(λ1− λ2)

sin(λ1 + λ2)
tanh(h1 + h2) R13(λ1 + λ2)C1R24(λ1 + λ2)C2. (32)

The corresponding Lax matrixl(λ) is given by

r(λ, 0) = 1

coshh
l(λ) = 1

coshh
R13(λ)R24(λ)I12(2h). (33)

Similarly, one finds

r(0, λ) = 1

coshh
I34(−2h)R13(−λ)R24(−λ) (34)

with a coupling on the quantum spaces. The regularity and unitarity properties are satisfied
without modifications. The equivalent (for periodic boundary conditions) Hamiltonian is
simpler:

d

dλ
ř(λ, µ)

∣∣
λ=µ = P13P̃

(3)
13 + P24P̃

(3)
24 +

U

cosh 2h

(
p
(1)
13 + cos(2µ)p(2)13 + sin(2µ)p(3)13

)
×(p(1)24 + cos(2µ)p(2)24 + sin(2µ)p(3)24

)
. (35)

The matrixr shows that the Hubbard structure lies in the linear combination of two objects
rather than the factors ofI (h).
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3.2. Fusion

The right-hand side of (28) shows thatλ1 − λ2 = ±π/2 are possible projector points. Both
values actually yield projectors with the same dimensionality. This result is peculiar to
the underlyingXX system, but there is otherwise no essential difference between the two
projectors. For definitenessρ = +π/2 is considered below. Let

π
(1)
1234=

1

(x + x−1)(x ′ + (x ′)−1)

(
P̃
(1)
13 + P̃ (3)13

)(
P̃ ′

(1)
24 + P̃ ′

(3)
24

)
(36)

π
(2)
1234= I− π(1)1234. (37)

The functiong(λ) defined in (2) is constant and equal to(x+x−1)(x ′+(x ′)−1). The expression
(36) is a decoupled product of a projector for each copy of a free-fermion system. To arrive at
this result one uses the following relation which is proved by a direct calculation:[

π
(1)
13 π

(1)
24 , I12(h)I34(−h)

] = 0 ∀h ∈ C (38)

whereπ(1)ij = (x + x−1)−1(P̃
(1)
ij + P̃ (3)ij ) is the projector of one copy (x may have a different

value for each copy).
The dimensions of these projectors are given by their traces. In particular, for the unprimed

copy, one has tr(π(1)) = n1n2 and tr(π(2)) = n2
1 + n2

2 + n1n2. The matrices which diagonalize
one copy of both projectors are given by

S =
∑
a,a′

Eaa ⊗ Ea′a′ +
∑
β,β ′

Eββ ⊗ Eβ ′β ′ +
∑
a

∑
β

(
Eaa ⊗ Eββ + x−1Eββ ⊗ Eaa)

+
∑
a

∑
β

(
Eaβ ⊗ Eβa − xEβa ⊗ Eaβ) (39)

S−1 =
∑
a,a′

Eaa ⊗ Ea′a′ +
∑
β,β ′

Eββ ⊗ Eβ ′β ′ + 1

x + x−1

∑
a

∑
β

(
x−1Eaa ⊗ Eββ +Eββ ⊗ Eaa)

+
1

x + x−1

∑
a

∑
β

(−Eaβ ⊗ Eβa + xEβa ⊗ Eaβ). (40)

The diagonalized projectors read

S−1π(1)S =
∑
a

∑
β

Eββ ⊗ Eaa (41)

S−1π(2)S =
∑
a,a′

Eaa ⊗ Ea′a′ +
∑
β,β ′

Eββ ⊗ Eβ ′β ′ +
∑
a

∑
β

Eaa ⊗ Eββ. (42)

To use the fusion formulae for the Hubbard models one doubles every space to unprimed
and primed copies. For instance,R14(λ, µ − ρ) in (10) is replaced byR11′44′(λ, µ − ρ) or
r11′44′(λ, µ − ρ), obtained from (26) or (32), respectively. The calculations involved in (3)
and (10) are straightforward and can be carried out using the explicit expressions (36), (37),
(39) and (40). Similarly, the quadratic Hamiltonian density can eventually be obtained from
the right-hand side of (14) or (15), or directly once (10) is calculated. The explicit expressions
in terms ofE-matrices are, however, unwieldy, complicated and unenlightening unless used
for specific applications such as writing down the Hamiltonian in terms of higher-spinsl(2)
generators, or for an explicit diagonalization.
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It is easy to verify that the relation between the fused matrices based onR and r is a
non-diagonal similarity transformation:

R
(i)
〈12〉〈34〉(λ1, λ2) = S−1

12 S
−1
1′2′S

−1
34 S

−1
3′4′ I11′(h1)I22′(−h1)I33′(h2)I44′(−h2)

×S12S1′2′S34S3′4′ r
(i)
〈12〉〈34〉(λ1, λ2) S

−1
12 S

−1
1′2′S

−1
34 S

−1
3′4′

×I11′(−h1)I22′(h1)I33′(−h2)I44′(h2) S12S1′2′S34S3′4′ . (43)

To unravel the coupling structure of the models just obtained from fusion, we can look for Lax
matrices as in (29). The following relations for (19) are easily derived:

R12
(
λ± 1

2π
)
C1 = −C1R12

(
λ∓ 1

2π
)

(44)

R12
(
λ± 1

2π
)
C1 = −R12

(± 1
2π − λ

)
C2. (45)

(Such relations clearly have fermionic counterparts [22].) One can then obtain the fused
matrices (10) (for (26)) at some particular points:

R
(i)
〈12〉〈34〉(λ, 0) =

1

cosh2 h
S−1

12 S
−1
1′2′I11′(−h)I22′(h)S12S1′2′R

(i)
〈12〉〈34〉(λ)

×R(i)〈1′2′〉〈3′4′〉(λ)S−1
12 S

−1
1′2′I11′(h)I22′(−h)S12S1′2′ (46)

and

R
(i)
〈12〉〈34〉(λ,

1
2π) =

1

cosh2 h
S−1

12 S
−1
1′2′I11′(h)I22′(−h)S12S1′2′R

(i)
〈12〉〈34〉(λ− 1

2π)

×R(i)〈1′2′〉〈3′4′〉(λ− 1
2π)S

−1
12 S

−1
1′2′I11′(−h)I22′(h)S12S1′2′ . (47)

These expressions correspond to the decoupled product of two copies of multi-flavour spin-1
(i = 2), or spin-0 (i = 1) models at their free-fermion pointγ = π/2. Indeed, contrary to what
happens in (29), the product ofSIS’s on the left is the inverse of that on the right, and as such
theI -matrices implement an innocuous gauge transformation rather than a coupling. (Another
explanation of the non-coupling nature of theI ’s is found in the following paragraph.) This
negative result can be understood with hindsight. A simple coupling through theI -matrices
would have been naive because the conjugation operatorC has very special properties with
respect to theR-matrices and is peculiar to the spin-1

2 representation.
The pointsµ = 0,±π/2, and similarlyλ = 0,±π/2, are then decoupling points. For a

generic pair(λ, µ) there is no decoupling, and (3) and (10) applied to the Hubbard models yield
the multi-flavour spin-(0× 1

2), spin-(1× 1
2), spin-(0× 0) and spin-(1× 1) Hubbard models.

The structure of their corresponding matrices has a simple interpretation. As emphasized in
section 3.1, it is the special linear combination ofRR andRCRC appearing in (32) which
is characteristic of the Hubbard models. Looking back at (10) and expanding the product
with R replaced byr, one finds a special linear combination of 16 terms, each a product of
RR andRCRC. The 16 terms precisely account for all possible combinations one could
have found natural to consider. BothR andRC satisfy Yang–Baxter equations [10, 21],
and are therefore candidates for linear combinations. Fusion nicely retains this structure. It
also shows the preponderant role played by the underlyingsl(2) structure of theXX models
which can be repeatedly fused to reach any spin and therefore any spin-(s × s ′) Hubbard
model.

3.3. Non-locality atq2 = −1

An important issue is whether a givenR-matrix is regular. Within the QISM, integrability
ensures the existence of a large number of commuting quantities. The Yang–Baxter equation
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implies that the transfer matrices forN sites, τ(λ, µ) = Tr0[R0N(λ, µ) · · ·R01(λ, µ)],
mutually commute at arbitrary values of either of the spectral parameters (the other one
remaining fixed). The matrixτ(λ, µ) is therefore the generator of mutually commuting
quantities. Such quantities are generically non-local. For periodic boundary conditions, local,
commuting spin-chain Hamiltonians can, however, be defined by taking the derivatives of
the logarithm of the transfer matrix at a point where theR-matrix is regular. The transfer
matrix at such a point is proportional to the unit-shift operator on the chain. Its inverse, in the
logarithmic derivatives, ‘cancels’ most of the operators in the numerators at the sites where no
derivative has been taken. In the following cases regularity does not hold. Unitarity by itself is
not enough to ensure that the transfer matrix is invertible, and each case should be considered
separately.

Before turning to the fused Hubbard models, consider the spin-1 matrix which can be
obtained by fusion from theXX models (19), and which appears in (46) and (47) fori = 2.
The following gauge transformation turns the asymmetricm = 2XXC R-matrix of [28] into
a symmetric matrixR(s):

R(s)(λ) = (I⊗ A(λ))R(λ) (I⊗ A(−λ)) (48)

whereA(λ) =∑α1
Eα1α1eic1λ +

∑
α2
Eα2α2eic2λ andc2 − c1 = 1. At γ = π/2,

R(s)(λ) = P̃ (1) sinγ + P̃ (2) sin(γ + λ) + P̃ (3) sinλ (49)

reduces to (19). The net effect on fusing the symmetric version, for any value ofq, is to remove
(beforeq2→−1) all factors ofy±1 andq±1 from (38) in [28]. The symmetric spin-1 matrix is
reproduced in the appendix. Forγ = π/2 the two simple zeros off (λ) = sin(γ +λ) sin(γ−λ)
become a double zero atλ = π/2. Settingγ = π/2 in (A1) allows one to cancel out a factor
of sinλ. The resulting matrix satisfies the Yang–Baxter equation, is unitary but not regular at
any value ofλ. However, one can still define local Hamiltonians through a limiting procedure
from generic values ofγ . One drops the prefactor in the left-hand side of (A1), and calculates
the local conserved quantities with this renormalizedR-matrix:

Hp+1 = (sinγ sin 2γ )p
dp

dλp
log(Tr0[R0N(λ) · · ·R01(λ)])|λ=0 p > 0. (50)

These commuting local Hamiltonians are finite and non-trivial asγ → π/2. (The factor
(sinγ sin 2γ )p may cancel some contributions but leaves the main ones.) Thus despite the
lack of a regular point it is possible to define local conserved quantities.

The functionf (λ1, λ2) in (28) has a double zero, atλ1− λ2 = ±π/2, which is inherited
from theXX models forming the Hubbard matrix. The special cases (46) and (47) are non-
regular matrices and indicate that the fused matrix (10) (i = 2) for the Hubbard models, is
probably not regular for all values ofλ = µ. (For the spin-(0×0) case,i = 1, dimensionality
considerations imply regularity, just as for the XX models.) A definite proof of non-regularity
for generic values of the spectral parameters would be welcome. There is no known ‘quantum’
deformation of the generalized Hubbard models to invoke a first-order zero and take the limit.
Although the absence of local quantities would be surprising, it is not clear whether they
exist and how they can be calculated for all the Hubbard models corresponding to coupled
spin-(s × s ′) XX models, withs or s ′ > 1.

Finally, consider the pointq2 = −1 (γ = ±π/2) for all the models considered in [28].
The functionf (λ) in the unitarity equation picks up a double zero atλ = π/2. So one can
expect the loss of the regularity property for all the matricesR

(i)
〈12〉〈34〉(λ) obtained from the

R-matrices of the defining representations of the multiplicityAm models. This was seen above
explicitly for the spin-1A1 model. Further fusions will propagate this non-regularity to all
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the higher representations, with the combined appearance of higher harmonics ofγ , that is of
higher roots of unity forq. Local conserved quantities should, however, still be obtainable
through the limiting method described above. That the fourth roots of unity, and more generally
nth roots of unity, play a specific role for the single-flavour models (ni = 1, i = 1, . . . , m+1) is
not surprising. The representation theory of the quantum algebraUq(sl(m+1)) is in one-to-one
correspondence with that of the undeformed algebra whenq is not a root of unity. This is not
the case for roots of unity: the representation theory becomes richer and more complicated.
The defining representations are, however, undeformed for all values ofq.

4. Conclusion

The fusion method was shown to generalize naturally to non-additive solutions of the Yang–
Baxter equation. Expressions for the fused matrices, the regularity and unitarity equations
and the quadratic Hamiltonians were obtained. The issue of non-simple zeros was raised and
connected to a possible lack of regularity of the fused matrices. This raised the issue of the
existence of a set oflocal commuting quantities. The generalized Hubbard models were then
shown to allow fusion for all spin-(s × s ′) representations, and compact expressions were
obtained for theR-matrices corresponding to mixed spin-0, 1

2, 1 multi-flavour representations.
Local Hamiltonians are believed to exist but a definite proof and a method of calculation are
lacking.

The fused Hubbard models inherit the symmetries of the two coupled multi-flavour spin-
(s × s ′) copies. These symmetries, and the fusion equations between the various transfer
matrices can be used to diagonalize them through the algebraic Bethe ansatz. (The lack of
regularity should not pose a problem.)

The connection, noted in section 3.1 for the Hubbard models, between theL- andR-
matrices and the correspondingRLL andRRR Yang–Baxter equations could serve as a
naturalness test for the choice of anR-matrix. This could be particularly relevant in the
Bariev model for which more than oneR-matrix is known to exist [14–16]. More generally
one can ask the following question. Provided the dimensions match and given a Lax operator
associated with a non-additiveR-matrix, canL be obtained as a limiting case of the originalR

or some other one with theRLL relation satisfied? Another general test could be the existence
of projector points. Fusion should also be applicable to the Bariev and Chiral Potts models.

Finally, a non-additive matrix for the Bariev model was recently obtained by twisting a
quantum groupR-matrix and taking a singular limit [30]. It is, however, not clear whether
such a method can be made to work for the Hubbard models.
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Appendix. The symmetric multi-flavour spin-1 matrix

The spin-1 matrix discussed in section 3.3 is given by
sin(2γ − λ)
sin(λ + γ )

R
(2)(s)
〈12〉〈34〉(λ) = + sin(λ + γ ) sin(λ + 2γ )

∑
a,b,c,d

Eab ⊗ Ecd ⊗ Eba ⊗ Edc

+ sin(λ + γ ) sin(λ + 2γ )
∑
α,β,γ,δ

Eαβ ⊗ Eγδ ⊗ Eβα ⊗ Eδγ
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+ sin(2γ ) sin(λ + γ )
∑
a

∑
α,β,γ

Eαa ⊗ Eβγ ⊗ Eaα ⊗ Eγβ

+ sin(2γ ) sin(λ + γ )
∑
a,b,c

∑
α

Eab ⊗ Ecα ⊗ Eba ⊗ Eαc

+ sin(2γ ) sin(λ + γ )
∑
a,b,c

∑
α

Eab ⊗ Eαc ⊗ Eba ⊗ Ecα

+ sin(2γ ) sin(λ + γ )
∑
a

∑
α,β,γ

Eaα ⊗ Eβγ ⊗ Eαa ⊗ Eγβ

+(sinγ sin(2γ ) + sinλ sin(λ + γ ))
∑
a,b

∑
α,β

Eab ⊗ Eαβ ⊗ Eba ⊗ Eβα

+ sinγ sin(2γ )
∑
a,b

∑
α,β

Eαa ⊗ Eβb ⊗ Eaα ⊗ Ebβ

+ sinγ sin(2γ )
∑
a,b

∑
α,β

Eaα ⊗ Ebβ ⊗ Eαa ⊗ Eβb

+2x−1 cosγ sin(2γ ) sinλ
∑
a,b

∑
α,β

Eαa ⊗ Eβα ⊗ Eab ⊗ Ebβ

+x sinγ sinλ
∑
a,b

∑
α,β

Eab ⊗ Eαa ⊗ Ebβ ⊗ Eβα

+x−2 sinλ sin(λ + γ )
∑
a,b,c

∑
α

Eab ⊗ Eαα ⊗ Ebc ⊗ Eca

+x−2 sinλ sin(λ + γ )
∑
a

∑
α,β,γ

Eαβ ⊗ Eγα ⊗ Eaa ⊗ Eβγ

+x2 sinλ sin(λ + γ )
∑
a,b,c

∑
α

Eab ⊗ Eca ⊗ Ebc ⊗ Eαα

+x2 sinλ sin(λ + γ )
∑
a

∑
α,β,γ

Eaa ⊗ Eαβ ⊗ Eβγ ⊗ Eγα

+x−3 sinγ sinλ
∑
a,b

∑
α,β

Eaα ⊗ Eββ ⊗ Ebb ⊗ Eαa

+2x3 cosγ sin(2γ ) sinλ
∑
a,b

∑
α,β

Eaa ⊗ Ebα ⊗ Eαb ⊗ Eββ

+x−4 sin(λ− γ ) sinλ
∑
a,b

∑
α,β

Eαα ⊗ Eββ ⊗ Eaa ⊗ Ebb

+x4 sin(λ− γ ) sinλ
∑
a,b

∑
α,β

Eaa ⊗ Ebb ⊗ Eαα ⊗ Eββ. (A1)

This matrix is regular forγ 6= 1
2π + kπ (k ∈ Z), and unitary for arbitraryγ :

R
(2)(s)
〈12〉〈34〉(0) = sin2 γ P13P24π

(d)
12 π

(d)
34 (A2)

R
(2)(s)
〈12〉〈34〉(λ)R

(2)(s)
〈34〉〈12〉(−λ) = sin2(γ + λ) sin2(γ − λ) π(d)12 π

(d)
34 (A3)

whereπ(d) is equal to the right-hand side of (42). (It is necessary to letx −→ −x before using
(A1) in (46) and (47).)
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